Package se.hb.jcp.cp.measures
Interface IPriorMeasure
-
- All Superinterfaces:
IMeasure
- All Known Subinterfaces:
IPriorMultiProbabilisticMeasure
- All Known Implementing Classes:
AbstractPriorMultiProbabilisticMeasure,ExcessCriterion,FuzzinessCriterion,MultipleCriterion,MultiProbabilisticLowerBound,MultiProbabilisticUpperBound,NumberCriterion,OneCCriterion,SumCriterion,UnconfidenceCriterion
public interface IPriorMeasure extends IMeasure
A prior measure depends only on the prediction made. See [V. Vovk, V. Fedorova, I. Nouretdinov and A. Gammerman, "Criteria of Efficiency for Conformal Prediction", COPA 2016, LNAI 9653, pp. 23-39, 2016] for the definitions used here.- Author:
- anders.gidenstam(at)hb.se
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doublecompute(ConformalClassification prediction)Compute the measure for the supplied conformal prediction.
-
-
-
Method Detail
-
compute
double compute(ConformalClassification prediction)
Compute the measure for the supplied conformal prediction.- Parameters:
prediction- a ConformalClassification.- Returns:
- the measure for the supplied prediction.
-
-